Elevated carbon dioxide is predicted to promote coexistence among competing species in a trait‐based model
نویسندگان
چکیده
Differential species responses to atmospheric CO 2 concentration (Ca) could lead to quantitative changes in competition among species and community composition, with flow-on effects for ecosystem function. However, there has been little theoretical analysis of how elevated Ca (eC a) will affect plant competition, or how composition of plant communities might change. Such theoretical analysis is needed for developing testable hypotheses to frame experimental research. Here, we investigated theoretically how plant competition might change under eC a by implementing two alternative competition theories, resource use theory and resource capture theory, in a plant carbon and nitrogen cycling model. The model makes several novel predictions for the impact of eC a on plant community composition. Using resource use theory, the model predicts that eC a is unlikely to change species dominance in competition, but is likely to increase coexistence among species. Using resource capture theory, the model predicts that eC a may increase community evenness. Collectively, both theories suggest that eC a will favor coexistence and hence that species diversity should increase with eC a. Our theoretical analysis leads to a novel hypothesis for the impact of eC a on plant community composition. This hypothesis has potential to help guide the design and interpretation of eC a experiments.
منابع مشابه
Economic and Environmental Factors Determining the Amount of Carbon Dioxide Emissions in the MENA Countries
Abstract: The gradual warming of the earth and its negative environmental and economic impacts contributed to pay attention to sustainable development considerably. Since climate change is a major cause of greenhouse gas emissions, including CO2, countries are seeking to prevent the rapid growth of emissions to reduce global climate change. Accordingly, and considering the importance of the sub...
متن کاملLocal adaptation of developmental time and starvation resistance in eight Drosophila species of the Philippines
The ecological trade-off between developmental time and starvation resistance, acting in a heterogeneous environment, can promote the coexistence of competing species. Heterogeneity results from variation in the vegetation that influences both abiotic (e.g. temperature, humidity) and biotic (e.g. fruit availability during the year) aspects of the environment. In this study, we investigated whet...
متن کاملPlant functional traits and the multidimensional nature of species coexistence.
Understanding the processes maintaining species diversity is a central problem in ecology, with implications for the conservation and management of ecosystems. Although biologists often assume that trait differences between competitors promote diversity, empirical evidence connecting functional traits to the niche differences that stabilize species coexistence is rare. Obtaining such evidence i...
متن کاملStatistical trend analysis and forecast modeling of air pollutants
The study provides a statistical trend analysis of different air pollutants using Mann-Kendall and Sen’s slope estimator approach on past pollutants statistics from air quality index station of Varanasi, India. Further, using autoregressive integrated moving average model, future values of air pollutant levels are predicted. Carbon monoxide, nitrogen dioxide, sulphur dioxide, particu...
متن کاملCoexistence introducing regulation of environmental conditions.
Interactions between environmental conditions and environment-affecting species have not been investigated extensively. In this study, the population dynamics of species yielding regulative feedback between temperature (a representative of environmental condition) and species with a temperature-altering trait was examined. We considered a simple closed model that described the population of two...
متن کامل